' ‘//x\ T

625 72

| s;eamms{ew% z

- % \j,wr
R SN

’/'J/\
B 2l

‘t W”A,FT’ER B\ e\WL‘

- :f AfchA,yUE S- —E.NB\I;A MON T

/‘r" oy
. ;.. S

L -
S PR v - L X N
N Yﬁs\) AT f/ K\ - ,)

(NAS SA-TH-X- ~65913) - AN uxfﬂ?oy
%01). NIGHT AIRGLOW FROH

63001
" OBSERVATIONS' E.I. ‘Reed, ‘et-a

LOH LATITUDE

0GOo-4 .

1: (NASA): - Hay
. C :

e g
Vi 1197}

N




3-‘ .
'f/."vq‘.;'v
AN ATLAS OF LOW LATITUDE 6300A [OI] NIGHT
AIRGLOW FROM OGO-4 OBSERVATIONS
by

Edith I. Reed
Laboratory for Planetary Atmospheres

Walter B, Fowler
Laboratory for Optical Astronomy
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771
and
Jacques E. Blamont
Service d'Aeronomie
Centre National.de la Recherche Scientifique
Boite Postale No. 3

91 - Verrieres le Buisson
" France

NOTE

This document is similar to, but not identical with a
manuscript prepared for submission to the Journal of Geophysical
Research. In this document, black and white maps are substituted
for the Color Plates of the journal manuscript. Furthermore
Color Plate 1 is for November 18-20 instead of November 22-25,
- Color Plafe 4 is for December 25-28 instead of December 29-30,
and the curves in Figure 7 are for the corresponding dates.
The general content of the maps is similar except that less
moonlight was present in the original data for the dates used
in the JGR color plates. The advantage of ready reproduction
of black and white maps is felt to outweigh the change of

dates.



ABSTRACT

The atomic oxygen emission line at 6300A as measured in
the nadir direction by a photometer on the polar orbiting
satellite 0GO-4 has been plotted between 40°N and 40°S
latitude on a series of maps for the moon-free periods
between August 30, 1967 and January 10, 1968. Readily
apparent are the longitudinal and local time variations
which occur during the northern fall-winter season. The
northern tropical arc is more widespread; the southern arc is not
present at all longitudes. The arcs in early evening are
strong and distinct, separated by very low emission rates
at the magnetic equator. The arcs lie generally along
magnetic parallels, move toward the magnetic equator as the
night progresses, and, in the early morning hours, decrease
in emission rate and degenerate into patches. Regions of
enhanced emissions, corresponding to a sunlit atmosphere
in the conjugate aréa, are found both in the evening and in
the morning. The paper deécribes the conditions under which
the observations_were made as well as presenting four airglow

maps selected to show the locél time variations.



INTRODUCT ION

The observations of the 6300A emission line of atomic
oxygen 0(1Da3P) on a world-wide basis from satellite-borne
photometers offers a unique method of probing the atmosphere
at altitudes near 300 km. At night at low latitudes the O(ID)

is primarily the result of a two step process:

0" + 0, = 02+ + 0 followed by

+

0,

+ e > 0 + O(lD)

The O(lD), wﬁich has a radiative lifetime of 110 seconds,
will at altitudes below about 250 km begin to lose its energy
to the neutral molecules by collisional deexcitation: Hence
the 6300A emission is a reflection of the vertical distribution
of both the neutral and ionized components of the atmosphere.

The use of observations of 6300A has been limited by the
few low latitude airglow observatories in operation in any
given year and by the fact that many of the movements of
interest are on a scale too large to be effectively studied
from a single station. Satellite observations can be used
for such features and give a geographic coveragé on a scale
hitherto unattainable.

It is fhe pufpose of this paper to present a selection
of 0GO-4 (Orbiting Geophysical Observatory) observations of
the 6300A airglow, and describe instrumental and operational
limitations which govern their cohtent. The various low and
mid-latitude phenomena evident in the OGO—4 data are dis-
cussed and related‘to the detailed and long term data

available at specific locations.



The emission rate of 6300A as a function of latitude and
longitude at various local times is presented in a series of
maps. The observations were made by the earth-lqoking air-
glow photometer on 0GO-4 from August 1967 thrdugh January
1968. Besides giving an overall view of low latitude air-
glow and its large scale phenomena, the mapsvalso serve as
an index to available 0GO-4 airglow data. Detailed data,
including that for other wavelengths, are available in
limited amounts from the authors. All data will evenfually
be placed in the National Space Science Data Center (Green-
belt, Maryland 20771), |

MAIN BODY PHOTOMETER

The Main Body Photometér on 0GO-4 was designed to
measure the integrated vertical emission and had the fol-
lowing characteristics:

1. Emission was measured in 6 different wavelength
regions below the spacecraft and in one (6300A) above the
spacecraft. The expected sources of light in each region
are given in Table 1.

2. Spectral bandpass for visual wavelengths was a
nominal 50 A and for the uv (2630 A) region was about 250 A.

3. Minimum detectable signal (for 5577 A) was less than
5 Rayleighs.

4. Photometer output was measured with an accuracy

ranging from 4 to 10% between the minimum detectable signal



WAVELENGTH
Region, A

2630
(2500-2750)

3914

5577

5893

6225
6300

TABLE 1

SOURCES OF LIGHT.

3, +
z
02(A u ) Herzberg
N2(A32u+) Vegard-Kaplan
N2+(B22u+) First Negative
unidentified band

(Broadfoot & Kendall,
1968)

Hg
o(ts)
OH(7-1) Meinel

Na(ZP)

OH(8-2) Meinel

Nz(Bsn ) first positive
g

OH(9-3) Meinel

o('p)

OH(9-3) Meinel

airglow
aurora
aurora

airglow

mercury vapor street
lamps

airglow and aurora
airglow

airglow
sodium vapor street lamps

airglow

aurora

airglow

airglow and aurora

airglow

In addition, an airglow continuum is present in the 5577, 5893,

6225, and 6300A regions.

A second centinuum source for these

same regions and the 3914A is that due to starlight, zodiacal
light, and moonlight reflected from the earth and its atmosphere,
The continuum from incandescent street lamps appears in the 5577,

5893, 6225, and 6300 A regions.
scattered sunlight can appear in all regions.

When the spacecraft is sunlit,

Measurements above

the spacecraft were made in the 6300A region, in which the (O D)
emission, starlight, zodiacal light, and moonlight could be de-

tected.



and the upper limit of about 200 kilorayleighs. Absolute
accuracy of radiance was about 15%.

5. The field of view had a half angle slightly less
than 5 degrees,

6. A complete set of measurements was made in 8 seconds,
corresponding to a movement by the spacecraft along the or-
bit of about 1/2 degree of latitude.

7. Appropriate protection was provided to avoid photo-
cathode and dynode fatigue and damage from direct or earth
reflected solar illumination.

8. Although the instrument was designed primarily for
use with the spacecraft in the earth's shadow, baffling
was sufficient for some low brightness measurements when
the spacecraft was sunlit; skyward measurements could
be made when the sun was more than 60° from zenith. A
more detailed description of the characteristics of the
instrument is given in (Reed, Fowler & Blamont, 1972).

A brief report of the results from a similar ihstrument in
0GO-2 is given in Reed and Blamont, 1967. An analysis of
0GO-4 data from a meteorological viewpoint is given in
Warnecke, et al., 1969; observations of the mbonlit earth
are used to determine earth albedo by Fowler et al.,

1971, A description of fhe moving mechanisms (shutters,

stepper motors, etc.) is given in Bauernschub, 1965.



CALIBRATION

Prior to flight the spectral responsivity was measured
ovor the expected range of radiances and operatiﬁg'tem-
beratures (0 to 40° c).

The spectral characteristics of each wavelength
interval, determined primarily by the interference filter,
are given for room temperature in Table 2. The temperature
effects were due partly to the wavelength shift in filter
charactefistics and partly to the change in responsivity of
the photomultipiier and its electronios. The absolute
responsivity and its temperature coefficients for a continuun
source and for line sources at the nominal wavelengths are
given in Table 3.

The responsivity over the entire range of thé photometer
was checked and found to be linear with variations of less
than 4% for radiances corresponding to anode currents of
up to 4 x 10—7 amperes. Above this, the neafly logarithmic
.curve was experimentally determined.

Careful measurements Were made of the wings of the
spectral response curve of the photometer by noting the
response in each of the mirror positions relative to a
high radiance of near monochromatic light corresponding
to each one of the wavelength regions. The relative re-
sponses were arbitrarily termed crosstalk coefficients

and are given in Table 4.
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The absolute responsivity was measured in May 1966 with
NBS calibrated quartz-iodine lamps and a large area white
diffuser. Further checks included photomultipliers and
thermopiles calibrated by the Eppley Laboratory. The
resultant responsivity is represented by 1.0 on the
ordinate in Figure.l° Final ground calibration, after a
year of environmental testing, was based on three stable
C14 excited phosphors aof approximately the same spectral
radiance as the airglow. These phosphors were periodically
calibrated both against our standard lamps and by M. Gadsden
and H.V. Blacker at ESSA in Boulder, Colorado. Accuracy of
laboratory and phosphor calibration is estimated at +5%. By
May 1967, the responsivity had dropped equally for all filter
channels to 85% of its May 1966 value. .

After launch three techniques were used to measure
responsivify. Ground observations made at 6300 A and 5577 A
on clear nights in early October from the Haleakala Airglow
Observatory in Hawaii were compared with 0G0l4 data taken
when the satellite was within 75° of zenith '(émith 1970) .

See Figure 2. At 6300 A, after making approﬁriate computa-
tions concerning the geometry and background emissions, it
was noted that the responsivity over the range of 40 to 350
Rayleighs had dropped to 64% of the 1966 value. The airglow
emission on one of the three passes used was sufficiently
featureless so that with several assumptions concerning

altitudes and relative emission rates, it was possible to

11



make a comparison of the satellite and ground'observationé
of the E-region 5577 emissions; the resﬁlting responsivity
relative to the May 1966 calibration was 65%.

A second inflight technique was the observation at
6300 A of overhead bright stars or planets; Irradiance
was obtained for stars by interpolation with respecf to
class and wavelength in a table of monochromatic magnitudes
(Code, 1960)'in general conformance with the methods given
by Roach (1956) and Ramsey (1962). In the case of planets,
use was made of visual stellar magnitude from the American
Ephemeris and Nautical Almanac, curves of planetary spectral
reflectivity (Harris 1961), and Arveson's values for the
solar spectra (1969). The results of obsexrving various
stars and planets as well as the comparison with ground
observations are plotted in Figure 1., It is believed that
the absolute responsivity of the photometer as given
by Table 3 with Figure 1 is known to an accuracy
of + 7%.

A third inflight technique involved observation of
the highest radiance over clouds and the lowest radiance
over ocean under conditions near full moon (phase between
+ 300)° Computed lunar spectral irradiance at the sub-
satellite point was used to compute bidirectional re-
flectance which was then compared to atmgspheric models

for an approximate absolute calibration (Fowler, et al 1971).

-

12



Because change of responsivity was slow, the relative drop
in responsivity, as plotted in Figure 1, could also be
observed in moonlit bidirectional reflectance data and
was found to be the same on all channels viewing moonlight
below the spacecraft,

The various prelaunch calibrations indicated that the
~hange of responsivity as a function of time was the same
2t all wavelengths. The comparison with data from Haleakala
taken through much narrower interference filters tends to
indicate that the responsivity of the photometer changed
equally for both 5577 A and 6300 A. The change in response
to an internal incandescent lamp was similar for all channels,
further indicating that the responsivity of the various
channels with respect to each other probably remained
constant in flight.

For the analysis of 0GO-4 flight data through March
31, 1968, the relative responsivity, R, was computed by the

formula

3

R = exp (-1.477x1073 N + 2.217x107%)

where N is the number of days and is equal to 1 on

January 1, 1967.

13



DATA REDUCTION AND ANALYSIS

The signal at the photomultiplier cathode was expressed
in terms of the voltage that would have appeared across the
anode resistor if the gain of the photomultiplier had re-
mained constant and at the laboratory reference conditions.
To do this, the most sensitive on-scale word of the three
electrometer outputs was converted to voltage and adjusted
for the gain of the photomultiplier appropriate to the value
of the high voltage monitox. 1If the signal was above the
linear ranges of the system, the value of the high voltage
monitor was converted using the experimentally determined
curve.,

To eliminate the transients oécurring each time the
mirror stepped from one position to the next, the data
in the first 300 milliseconds of each second were deleted.
To delete pulses due to energetic particles and lightning,
the remaining samples were arranged in ascending order and
the average taken of the lowest (n/3)+1 samples (n is the
number of samples in the last 700 milliseconds). If there
were only two samples, the lower of fhe two was used.

The value of the dark current to be subtracted was
found by interpolating between the measurements of dark
current made at 8 second intervals. For the 6300A data
presented in this paper background emissions due to continuum,
OH bands, and reflected starlight and zodiacal light were

removed by subtracting 0.7 times the voltage observed in the

14



6225 A channel. The factor of 0.7 was arrived at by con-
sidering the nightglow spectrum given by Broadfoot and
Kendall (1968), the spectrum of the stars and zodiacal

light as equivalent to a G-2 star, a nominal earth albedo

of 0.4, and the responsivity of the photometer in the 6225 A
and 6300 A channels. It is a compromise value which does not
take into account the fact that the spectra of the background
as observed from a sateilite changes appreciably with earth
albedo. Neither does the present method of data analysis
take into account the apparent increase in line emission
rate due to high earth albedo (e.g. clouds, snow, Or ice),
which could give results which are high by as much as a
factor of two for an earth albedo equal to 1.0. However,
these emissions would not appreciably alter the general
pattern of the tropical red arcs, which have about a factor
of 10 more emission than the mid-latitude red airglow. After
correcting for dark current and for background emissions,

the resulting value for photocathode current was multiplied
by a convefsion_factor derived from Table 3 and Figure 1 to
arrive at the emission in terms of rayleighs.

The photometer observations derived ffom playback data
for the non-moonlit periods have been plotted on microfilm
such that each frame contains the data for one channel for
one day over a 30o range of latitude. The data from a
number of frames of microfilm have been reassembled to make

the 6300 A airglow maps which appear later in this paper.
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The systematic and random errors introduced by neglect
of temperature changes (over a range of about 50 C), neglect
of crosstalk contributions, and noise is judged to be less
than + 15%.

OPERATIONS

The availability of data from the photometer depended
on a number of factors, some dependent on orbit parameters
such as the presence of moonlight and sunlight, and others
dependent on the spacecraft operation, such as attitude
control and choice of telemetry formats and bit rate. 1In
Figure 3 and 4, a number of orbit—dépendent parameters
are indicated so that one can more readily determine the
times and latitudes at which moon-free airglow observations
could be made frém 0GO-4. Airglow observations were made
for five lunations beginning in late August 1967.

The spacecraft was in a near polar orbit (inclination =
860) with perigee of about 400 km and apogee of 930 km.
Consecutive orbits with a period of about 98 minutes crossed
the equator at intervals of 24.5° longitude; orbits of
consecutive days were offset from those of the previous
day by about 80. The plane of the orbit moved slowly
with respect to the sun such that the loecal time changed
6 minutes each'day,'or 12 hours in 4 months. See Figure 5.
The latitude of perigee moved slowly, making one complete

revolution in about 103 days.

16



The field of view of the main body photometef had a

noﬁinal half angle of 5° (for precise values, see Table 3)
corresponding to a measurement diameter at the various levels
of emission as given in Table 5.

The spacecraft was generally earth oiiented'so that the
+Z axis_(the hain body photometer axis) pointed to the center
of the earth, as defined by horizon scanners, and, in the
presence of sunlight, the -Y axis always was in the sun-earth
plane. The most notable exception was the period in August
1967, when the spacecraft was spun about its -Y axis which
was pointed toward the sun. Occasionally, at other times, the
earth-stabilized mode would be lost for an orbit or two, but
was soon restored.

Since there was not sufficient telemetry capacity avail-
able to give experiments the sample rate.they required at all
times, the telemetry system was time-shared by the use of
different telemetry formats, some of which gave high sample
rates to certain experiments, but none to others. "In general,
for a 48 hour period, format 00 was used, followed by a 48
hour period in which a variety of formats wefe,commanded.
Each day a format entirely devoted to the various spacecraft
monitors was scheduled for one orbit.

The Main Body Photometer had a barely édequéte sample
rate (two useful sgmples per second) when the spacecraft

data handling system used format 00 at the 4 kbs (kilobits

17



TABLE 5

altitude spacecraft spacecraft
of emission at 400 km at 900 knm
0O km 70 km 160 km
100 52 145
300 17 110

Diameter of the area observed for various altitudes
of emission and various altitudes of the spacecraft.

18



per second) rate. At other rates and formats there was an
adequate number of samples so that noise could be more
readily identified and deleted. (see Table 6).

MAIN BODY PHOTOMETER DATA

The summary maps prepared for the 6300 A airglow re-
present abput 3/4th of the data available at low latitudes
and are described in Table 7. Of these, four have been
selected for inclusion here. (Color Plates 1-4) These
represent various local times in the September-December
period. Color prints of all 19 maps may be obtained from-
the author (Reed and Blamont, 1972) or the National Space
Science Data Center,

Most of the maps are centered on the two-day format 00
period from which there were generally at least 10 orbits of
data per day. Each map includes some additional data from
the days preceding and following, from which there are
generally less than 5 orbits per day. In the occasional
cases where two orbits of data were available for a single
longitude, the orbit which seemed a better match to the
neighboring orbits was used. The summary maps have space
for a maximum of 44 orbits; the ones prepared each contain
data from 14 to 41 orbits. In the north-south direction,
photometer readings are made at approximately half-degree
intervals. The longitudes of orbit from which data were
used are indicated by the location of the orbit numbers at

the top of each map.

19



TABLE 6

Main Commutator , , Sub-

Bit rate Format 00 Format 12 Format 15 | Commutator
4 kbs 3.47 41 .7 27.8 0.027
16 kbs 13.9 167 111 0.108
64 kbs 55.6 667 444 0.434

Data rate in samples per second. The four analog outputs
and one digital output from each photometer were on the
Main Commutator. The remaining words were on the Sub-
Commutator,

20



TABLE 7

Periods in 1967-8 covered by the set of 19 maps.
are given by month, day of month, hour and minute of Universal Time

(GMT) .

geodetic equator,

START END
MAP MONTH TIME ORBIT MONTH TIME ORBIT NO of LOCAL
DAY DAY ORBITS T IME
1 8/30 0844 482 9/2 0537 524 31 0310
2 9/4 0254 552 9/7 0619 598 32 0246
3 9/7 1049 601 9/9 1345 632 16 0228
4 9/25 2219 873 9/28 1100 910 32 0044
5 9/28 1847 915 10/2 . 0617 966 32 0026
6 10/3 2102 990 10/6 1929 1033 35 2358
7 10/7 1441 1045 10/10 1622 1090 30 2337
8 10/10 1917 1092 10/13 1111 1131 27 2320
9 10/22 2120 1270 10/26 0708 1320 33 2210
10 10/26 1812 1327 10/30 0400 1377 34 2146
11 10/30 1957 1387 11/1 1438 1413 14 2127
12 11/2 1128 1426 11/5 0635 1467 26 2107
13 11/18 0027 1655 11/20 1757 1695 13 1932
14 11/22 2143 1727 11/25 0033 1758 30 - 1908
15 11/27 0240 1789 11/30 0104 1832 31 1838
16 12/25 2332 2215 12/28 1522 2254 29 0336
17 12/29 0403 2262 12/30 2243 2288 19 0318
18 1/1 2312 2318 1/5 2020 2375 26 0246
19 1/6 0052 2378 1/10 0746 2441 41 0219

Start and end times

Local time in hours and minutes is average local time at the

each map is stated.

paper.

21
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In these maps the contours of the airglow are indicate-.
as the boundaries of the various colors. The minimum-B
equator at 300 km (Stassinopoulos 1970) is plotted as a
heavy black line. The local time on the map is a nomina.
local time. All points on the map were observéd within 20
minutes of the stated time, the differences being due -0
the inclination of the.orbit, the range in latitude ((orres-
ponding to a 27 minute variation in local time), and to the
movement of the plane of the orbit (0.417 minutes ch:nge of
local time per orbit). A plot of local time and of Ap
(average amplitude of magnetic activity) is found in Figure 5.
Observations from August through November were taken as the
satellite moved through the earth's shadow from north to
south, so that local times at the top of the map :re earlier
than those at the bottom. 1In December and January, the satellite
was moving from south to north as it passed through the earth's
shadow, so that local times at the bottom of these maps are
earlier.

Some of the maps do include data from which a~substantial
background of moonlight has been subtracted. ~The four maps
included here are from moon-free periods.

In all maps there are areas for which no useful photo-
méter data is available. The lack of data mc¢y be for any
of several reasons:

(1) Interference due to energetic particles penetrating
the spacecraft and striking the photomultiplier window.

(See Reed et al 1967 and Fowler et al 1968). This is important

in the region of the South Atlantic magnetic anomaly.
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(2) The earth and lower atmosphere within the field
6f view of the photometer may be sunlit. For this reason
no data south of 250 latitude are included in map 14, nor
are data south df O0 latitude included in map 13.

(3) No data were received. This may be due to
planned operations of the spacecraft to permit sharing
of the limited telemetry among the various wusers, to
occasional loss of attitude control, or to problems in
data collection and processing.

(4) The data was not processed for the maps by the
experimenter. This is true for all realtime data and
for a small amount of playback data in which there were
special problems.

In the discussion of these maps, frequent references
are made to ground-based observations. The locations
of ground and rocket-borne observations and the ap-
proximate parths of ship and aircraft observations are
given in Figure 6, accompanied by Table 8. 1In Table 8
the geomagnetic latitude is computed for a north pole
with geographic coordinates of 11.,435o geocentric co-
latitude and -69..761o east longitude (Mead 1970). The
McIlwain parameter, L, was obtained for an altitude of 250
km for 1968.0 using the Pogo (8/69) coefficients given in Cain

and Sweeney (1970). The WDC-A column indicates that the station
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TABLE 8

LOCATION GEOGRAPHIC GEOMAG L WDC 1IQSY

Lat Long Lat 250 km -A

Fritz Peak 39 54 -105 29 48.7 2.4 X X

Sendai (Tokhatta) 38 6 140 33 28,1 1.3 b4 X

Ashkhabad (Vannovskaya) 37 57 58 6 30.5 1.4 X X

Fan Mtn 37 53 - 78 42 49,1 2.6 .

Wallops Island 37 50 - 75 29 49.1 2.6

Sounion 37 42 24 0 36.1 1.4

Granada 37 O - 330 .40.8 1.5

Cactus Peak 36 5 ~-117 49 43.2 1.9

Dodaira 36 0O 139 12 25.9 1.3 X X

Gifu 35 27 137 2 25.2 1.3 X b 4

Maruyama 35 1 139 58 25.0 1.3 b4 X

Aso 32 53 131 1 22.2 1.2 X b4

Sacramento Peak 32 43 =105 45 41.6 1.8 b.4

White Sands 32 24 -106 23 41 .2 1.8

Tucson 32 15 -110 50 40.5 1.7

Kitt Peak 31 57 -111 36 40.1 1.7 X X

Kagoshima 31 30 130 30 20.7 1.2

Sde Boker 30 54 34 48 27.4 1.2

Canary Islands ' 28 O -16 O 34.3 1.3 b4

Mt Abu 24 36 72 43 15.4 1.1 X X

Tamanrassett 22 48 5 32 25.2 1.1 X

Barking Sands 22 1 -159 8 21.7 1.2

Haleakala 20 42 -156 15 21.0 1.2 p 4 X

Poona 18 31 73 52 9.2 1.0 b4 X

Arecibo 18 24 - 66 54 29.8 1.5

Agadez 16 58 7 59 19.0 1.0

Debre Zeit 8 45 38 36 5.0 1.0 b 4

Lwiro -2 16 28 49 -3.5 1.1 X

Jicamarca -11 57 -76 52 -0.7 1.1

Huancayo -12 3 ~75 20 -0.7 1.1 X

Chacaltaya -16 18 - -68 12 -4.9 1.1

Makatea ~-16 25 -148 20 -13.9 1.1 x X

Aitutaki -18 54 -159 48 -18.5 1.1

Tsumeb -19 13 17 42 -18.3 1.4 X X

Townsville -19 15 146 45 -28.2 1.3 X

Tongatapu ~21 12 175 12 -25.6 1.3

Monumento Rodoviario -22 30 -44 0 -12.2 1.2

Roma -29 42 27 42 -30.5 1.7

"Woomera -30 58 136 54 -40.9 1.8

San Juan (E1l Leoncito) -31 32 -68 33 -20.2 1.2

Camden ' -34 0 150 24 -42.3 2.0 X,

Adelaide -34 52 138 57 -44.6 2.1
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was listed in the Catalog of Data on Solar-Terrestrial Physics,
(WDC-A, 1971) as having 6300A airglow data. The IQSY column
indicates that the station participated in IQSY observations
(Shapley and Roach 1970). -

Figure 6, drawn to the same scale as are the color plates,
shows the location of the stations in Table 8. Dashed lines
indicate the approximate paths of various shipboard and air-
craft expeditions. Thin lines represent apex latitudes
(VanZandt et al 1972), and the heavy solid line is the
minimum-B equator for 300 km altitude.

A list of over 100 references for these observa tions
may be found in Reed, 1972.

TROPICAL ARCS

". Location

The most striking feature of the maps from the 0GO-4
data are the broad belts of high emission rate in the vicinity
of the equator. In Color Plate 1, the northern arc is well
developed at most longitudes. There is a persistent tendency
for the northern arc to be weak near —300 longitude. The
ionosphere over the southern part of C.P. 1 is sunlit, as
indicated by the curves in Figure 7, showing the height of
the earth's shadow above the surface of the earth.

In Color Plate 2, both the northern and southern arcs
ére present with a typical location corresponding to about

30° dip angle. By midnight, as seen in Color Plate 3, the
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arcs have moved toward each other and have partially merged.
The intensities diminish in an irregulaf manner in the early
morning hours, degenerating into irregular patches which
show little repeatability from day to day as shown in Color
Plate 4.

From ground observations the northern tropical arc was-
first identified as such by Barbier and Glaume (1960). They
noted from data at Tamanrasset (Algeria) that the 6300A air-
glow was often in the form of an east-west arc, usually
moving from the north to the south during the course of the
night, sometimes continuously, sometimes disappearing and
reforming anew slightly to the south of its old position.
Using observations from Tamanrasset, Agadez, a simultaneous
airplane flight, and earlier observations from Lwiro (Delsemme
and Delsemme 1960), and noting the patterns of airglow that
could be computed from various ionosonde stations, Barbier
et al (1961) postulated a pair of tropical arcs of world
wide extent. Since then, they have beeh observed more or
lesé extensively from Haleakala (Hawaii) and from Mt. Abu
and Poona (India). They have}also been observed by other
airplane flights, from shipboard, and from satellites.
Selected references may be found in Table 9, in the recent
reviews by Silverman (1970) and Brasher & Hanson (1970), énd
an extensive list.in Reed (1972).

North-South Dissymmetry

The north-south dissymmetry in the. tropical arc is

especially marked in the maps from October 22 to November 5,
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of which Color Piate 2 is an example. The southern arc
grew progressively weaker over this time span. . This might
be considered a seasonal effect if one looks at ground
observations which are summarized in Table 9. The behavior
described by the references of this table in some cases was.
very marked, as at Tamanrasset, and in others was only a -
moderate tendency, as in the shipboard observations.

Even when arcs are present on both sides of the equator,
their location and shape may or may not be symmetrical and
similar. See especially C.P. 2 and 3. Weill et al (1968)
reported that in December 1966 - january 1967 at Debre
Zeit, Ethiopia, near the dip equator at about 40° longitude
t"the northern and southern arcs do not only differ in their
intensities and seasonal variations. They also differ notably
in width, and in their nocturnal movement and intensity vari-
ations. They move into the equatorial regiqn at different
times, and on individual nights their behavior seems unrelated."

Equatorial Minimum

Early in the evening, the 6300A emissions between the
tropical arcs is at very low values. This had been noted
indirectly by observations near the magnetic equator at
Huancayo (Peru) when Silverman and Casaverde (1961) reported
thatithe midnight maximum value was about a factor of 4 or 5
greater than the minimum observed for the night, considerably

greater than for other non-auroral stations.
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At nearby Jicamarca, Peterson and VanZandt (1969) noted
that during 1967 and 1968, early evening values typically
were low, and occasionally were essentially zero. This they
attributed to the great height of the F2 layer. Measurements
by the Jicamarca Radar Observatory indicated that "after sun-
set the F2-layer rises rapidly from its daytime level and
occasionally the height of the layer maximum, hmax’ reaches
an altitude exceeding 600 km. After sfaying at this altitude
for a period ranging from a few minutes to several hours, the
F2-layer drops in height, typically at a rate of about 20
msec—l. Qccasionally hmax drops as low as 250 km. The
total heighf excursions of the F2-layer during any one
night is typically about 150 km, although excursions as
large as 300 km have been observed".

The tendency for the emission rates in the equatorial
minimum at longitudes between Oo and 120o to be somewhat
greater than those at other loﬁgitudes is apparent on C.P.

2 and also on the other maps of these lunations. This is
undoubtedly influenced by the shape of the earth's magnetic
field; maps of L at 300 km (Stassinopoulos 1970) show that

L is less than 1 at.the min-B equator at 300 km at longitudes
between about 50o and 150°. |

Magnetic Activity

The most notable magnetic storm in the periods covered

by these maps occurred on September 28-30. Data for only a
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few orbits are available for September 28 and 29; SAR-arcs
were observed on orbits 915 and 923. The most noticeable
feature distinguishing this map (C.P. 3) from the others
of that lunation is that the southern arc at longitudes
between 60o and 160° is weak or absent, while on the others
(especially maps 6, 7, and 8) the southern arc tends to be
stronger than the northern arc.

Other observers have noted that at Tamanrasset in-
tensities were generally depressed for several hours after
a sudden commencement, and the arc structure disrupted
(Barbier 1962, Weill and Christophe-Glaume, 1967). At
Debre Zeit, Weill, et al., (1968) reported that the 6300A
emission rose to record intensities at the peak of a storm
before midnight, and then fell within 2 hours to record lows.
King (1968) has noted that during disturbed conditions, the
ionospheric equatorial anomaly is less developed in that the
equatorial arch is ﬂarrower and the crest-trough ratio of
critical frequency smaller thah normal.

Solar Cycle

In terms of the solar cycle, the data observed from
0GO-4 are representative of smoothed sunspot numbers of
about 100. The long term observations at Tamanrasset
(Weill 1967) énd at Haleakala (Steiger 1967, Smith and
Steiger 1968) indicate that for low sunspot numbers, less

than 30 as in 1963-1965, the average intensities decreased
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markedly, by at least 2/3, the mean dip latitude of the arcs
‘decreased by at least 6°, and that the arc structure tended
to degenerate into patches.

MID-LATITUDE AIRGLOW

Post-Twilight Decay

An examination of the values of the 6300A emission at
latitudés between those of the tropical arcs and the aurora
.shows that the vélues are high in the twilight (C.P. 1)
and decrease after sunset until sometime after midnight
(C.P. 2 and C.P. 3). The northern part of C.P. 4 continues
to show low post-midnight values, except near 0° to —1200
longitude, which will be discussed later. The ionosphere
in the southern part of C.P. 4 is sunlit to the extent
indicated by the shadow heights given in Figure 7.

Observations at latitudes and times which are free from
aurora and tropical arcs show that the 6300A emission usually
decays monotonically from its twilight vaiue over a period of
several hours, often extending beyond midnight. Chamberlain
(1958, 1961) reviewed a number of earlier observations, com=-
puted the rates that might be contributed by the resonance
scattering of sunlight ahd by decay of the nighttime F-region
through dissociative recomﬁination of 02+, and concluded
that the latter process was the principal one involved. Pal
(1970) noted that decay rates at Mt. Abu varied with season;
the profiles he computed through use of Chamberlain's formula

agreed fairly well with observations. Swider (1967) reviewed
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basic ionospheric processes and concluded that a simple

decay of the lower F-region gave reasonable results for red-
line emrissions such as were observed at Haute Provence and
Camden. Noxon and Johanson (1970) have made detailed studies
using simultaneously measured 6300A rates and electron density
profiles from Boston (U.S.A.). Brown and Steiger (1972) studied
decay rates using Haleakala data, and found that the post-
twilight decay rate apparently has no seasonal, solar-cycle,
or magnetic activity dependence., The initial post-twilight
value of emission, observed at Haute Provence (Barbier 1959)
and at Haleakala (Steiger 1967) does have a solar cycle
variation, being low at sunspot minmum. Annual averages

at Haute Provence do show a positive correlation with sunspot
number (Barbier 1965).

Predawn Behavior

On all three maps of the late August lunation, there
are regions at mid-latitudes in which the emission rate is
greater than 100 R and the general level seems to be somewhat
greater than are midnight levels. However, the location of
the regions of enhancements changes from map to map. For
the late December lunation all maps are noticéably brighter
to the south at all except about 0 to 60O longitude.

Conjugate Phenomena

On Color Plates 2 and 4, and on the other maps of those
lunations, there is a region of enhanced emission extending down

from the north and centered near -60° longitude. 1In some instances
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its boundary is noticeably parallel to the min-B equator,
although in Color Plate 2 this is somewhat obscured by the
day to day variations. Generally there is not a noticable
increase in 3914A emissions above the approximately 20R
background due to the band emissions and reflected zodiacal
and starlight normally appearing through this filter at
mid-latitudes.

Predawn enhancements were frequently observed at Haute
Provence France (Barbier 1959). These and other observations
were discussed by Chamberlain (1961). Cole (1965) noted
that the time and location of these enhancements corresponded
to sunrise in the conjugate F-region and postulated that the
enhanced airglow was due to photoelectrons which had traveled
along the magnetic lines of flux to the n}ghttime ionosphere.
Since then, maps have been calculated to indicate when and
where such enhancements might be expected to occur (Deehr
1969) ; the direct contribution to 6300A emissions from
photoelectrons has been found to be from 10 to 100 R de-
pending on local conditions (Noxon 1971), and various ob-
servations have indicated that the predawn enhancement is'
in part related to an increase in radiative recom;
bination of 02+, associated with a change in height of the
ionosphere (Noxon and Johanson 1970, Nichol 1970, Schaeffer
1971). A third source of predawn enhancement is the'creation
of excited O by thermal electrons, whose temperature has been

increased by the transfer of energy from the conjugate point.
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SUMMARY

The low latitude observations of the 6300A emissions
of OI reveal geographic and diurnal variations for a
northern fall-winter season during a time ofhigh solar
acitivity (smoothed sunspot numbers of about 100). In
some areas, these observations can be extended to other
times and seasons by use of the ground based observations.
The major features observed are:

1. Tropical red arcs. These are apparent immediately
after sunset, although development ofthe arcs at Atlantic
iongitudes is slow. Early evening values at the
magnetic equator are low (often less than 25 R) with a longi-~
tude correlation with L (McIlwain parameter). The southern
(summer) arc is weak except over Africa and the Atlantic.
Even here it is noticeably weakening during the two week
period of late October - early November. During the night
the two arcs move toward the equator and partially merge.

In the early morning hours, intensities in the tropics
decrease, and the arc structure degenerates into patches.

2. Mid-latitude. The mid-latitude values to the north
and south of the tropical arcs reach a maximum shortly after
sunset and generally diminish until after midnight. Morning
values are generally higher than midnight values, particularly
in the south in the December-January series.

3. Conjugate phenomena. An increase in intensities
corresponding to sunlit conjugate areas is apparent in the

evening (C.P. 2) as well as in the morning (C.P. 4).
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FIGURE CAPTIONS

Figure 1. Responsivity of the main body photometer relative
to the laboratory calibration of May 1966,

Figure 2. Comparison of simultaneous observations of airglow
from 0GO-4 and the Haleakala Observatory, Maui, Hawaii,
Thé non-zero intercept is attributed to imperfect cor-
rections for the background emissions of the E-region
and the sky.

Figure 3. Observing periods and locations for the descending
(nofth—to-south) half of the 0GO-4 orbit. 1In the times
and latitudes indicated by the shaded areas, the sub-
satellite point was moonlit. The time and latitude of
full moon is indicated by the small circles. The lati-
tude of perigee and apogee as a function of time is
indicated. At times and latitudes within the large
misshapen oval, the satellite was in the earth's shadow.

Figure 4. Observing périods and locations for the ascending
ﬁalf (south-to-north) half of the 0GO-4 orbit. See:
caption for Figure 3.

Figure 5. Map coverage, local hour at the equator, and
average amplitude of magnetic activity (Ap).

Figure 6. Locations of other observations of 6300A airglow.
Lines for the minimum-B equator at 300 km and fof Apex
latitudes are also included.

Figure 7. Height of the umbra above the sub-satellite point

as a function of latitude for the first and last orbits

C.P. 1 and 4.
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